EINFLUSS DER WHIRLPOOLHOPFENGABE AUF METALLIONEN IN BIER UND DESSEN AROMASTABILITÄT

M. Féchir,^{1,2} J. Dailey,³

B. Buffin,³ C. Russo,⁴

T. H. Shellhammer¹

¹Department of Food Science and Technology, Oregon State University, Corvallis, OR

²Hochschule Trier, Trier, Deutschland

³John I. Haas, Yakima, WA

⁴Keck Collaboratory for Plasma Spectrometry, Oregon State University, Corvallis, OR

Trier University of Applied Sciences

2. Brautechnische Arbeitstagung des DBMB – Bitburg, 16.11.2024

COLLEGE OF AGRICULTURAL SCIENCES

Department of Food Science and Technology

Hopfen im Braurozess

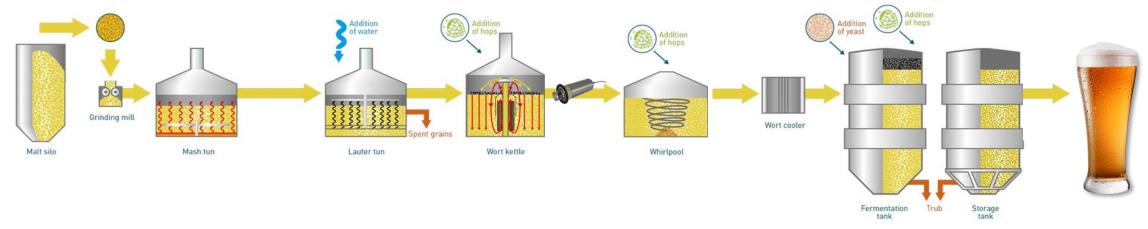
Würzekochen

Frühe Hopfengabe

- Heißextraktion flüchtiger Bestandteile, vollständige Verdampfung
- · Heißextraktion Hopfensäuren, Isomerisierung
- Bittere

Späte Hopfengabe

- Heißextraktion flüchtiger Bestandteile, teilweise Verdampfung
- > Hopfenaroma


Whirlpool

- Heißextraktion flüchtiger Hopfenbestandteile, geringe Verdampfung
- Hopfenaroma und Bittere, abhängig vom Hopfenprodukt

Kalthopfung

- Kaltextraktion flüchtiger Hopfenbestandteile, geringere Ausbeute aber kaum Verdampfung
- > Hopfenaroma

Bieraromastabilität

Aroma und Bittere stark gehopfter Biere sind nicht langzeitstabil

O₂-Konzentration

Bildung von reaktiven Sauerstoffspezies mit der Zeit Bildung von Hydroxylradikalen

Oxidation von Alkoholen, Lipiden, Humulonen zu Fehlaromen (Aldehyde, Ketone), Ausbildung Trübung (Komplexierung)

Würze & Bier pH

Zu niedriger pH (<4.3) beschleunigt Oxidation

Metallionen

Beschleunigen Oxidation und Bildung von Hydroxylradikalen

Cu²⁺ Fe²⁺ Fe³⁺ Mn²⁺

Aus Wasser, Malz, Hopfen, Hefe, Metalloberflächen mit Produktkontakt

Andere Metallionen wie Ca²⁺, K⁺, Mg²⁺, und Zn²⁺ werden von Hefe als Nährstoffe benötigt

Antioxidantien

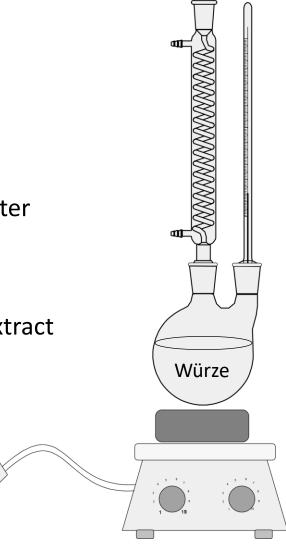
Antioxidantien und antiradikalische Substanzen wirken Metallionen und O₂ entgegen

SO₂ (Hefe)

Polyphenole (Malz, Hopfen)

Maillardprodukte (Malz)

Säuren, Chinone (Hopfen)


Auffangen und Unterdrücken von Radikalen, Komplexierung und Chelatisierung von Metallionen

 \rightarrow Qualitativ hochwertige Rohmaterialien, Reduzierung O₂-Aufnahme, pH-Kontrolle, Zusatz **Antioxidantien aus Hopfen**

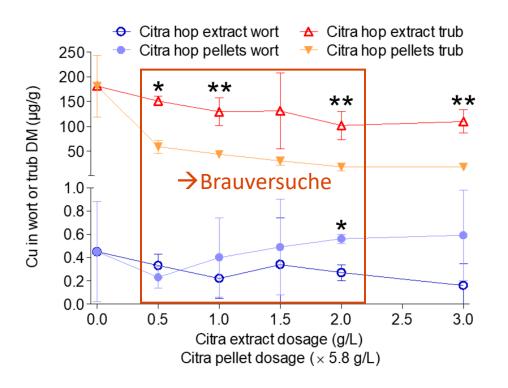
Würzekochung im Labormaßstab

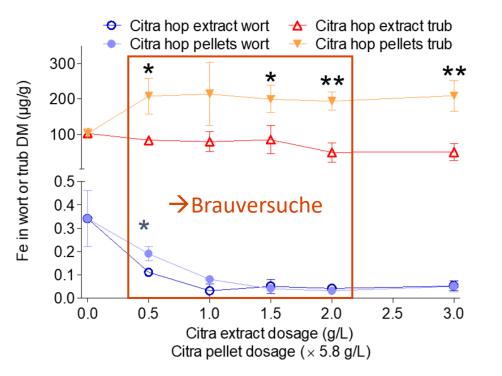
Würzekochungsversuche

- Herstellung von Würze im Maßstab 2,5 hL
- 100 % Pilsner Malz, Stammwürze 14.5 °P
- Kochung von 3 L Würze in 5 L Rundkolben
- Apparatur versehen mit Wasserkühlung, Kondensator und Thermometer
- Hopfengabe zu Kochbeginn mit Bitterextrakt, Ziel 20 IBU
- Kochvorgang für 60 min, Abschalten der Heizeinheit
- Whirlpoolhopfengabe mit Citra® T90 Pellets or superkritischem CO₂-Extract
- Manuelles Schwenken alle 5 min für 45 min, Abkühlung auf 82 °C
- Abtrennung Ausschlagwürze von Heißtrub per Dekantierung
- Lagerung Ausschlagwürze- und Heißtrubproben bei -18 °C

Würzekochung im Labormaßstab

Übersicht Hopfendosage


Probe	Hopfengabe V	Vürzekochen	Hopfengabe Whirlpool			
	Hopfenprodukt	Dosage (g/L)	Hopfenprodukt	Dosage (g/L)		
control	Bitterextrakt	0,09	_	_		
ex0.5	Bitterextrakt	0,09	Citra [®] Extrakt	0,5		
ex1.0	Bitterextrakt	0,09	Citra® Extract	1,0		
ex1.5	Bitterextrakt	0,09	Citra® Extract	1,5		
ex2.0	Bitterextrakt	0,09	Citra® Extract	2,0		
ex3.0	Bitterextrakt	0,09	Citra® Extract	3,0		
pe2.9	Bitterextrakt	0,09	Citra [®] Pellets	2,9		
pe5.8	Bitterextrakt	0,09	Citra [®] Pellets	5,8		
pe8.7	Bitterextrakt	0,09	Citra [®] Pellets	8,7		
pe11.6	Bitterextrakt	0,09	Citra [®] Pellets	11,6		
pe17.4	Bitterextrakt	0,09	Citra [®] Pellets	17,4		



Quantifizierung von Ca, Cu, Fe, K, Mg, Mn, Na, Zn mittels ICP-OES

Würzekochung im Labormaßstab – Metallionen

Cu- und Fe-Konzentrationen in Ausschlagwürze and Heißtrub in Abhängigkeit von Whirlpoolhopfendosage und Hopfenprodukt, 3 unabhängige Wiederholungen

ANOVA

*
$$p \le 0.05$$

$$p \le 0.001$$

Brauversuche im Pilotmaßstab

Maischen und Läutern

- Pale Ale
- Pilotmaßstab 2,5 hL
- 100 % Pilsner Malz
- Stammwürze 14,5 °P

Würzekochen und Hopfengabe

- Würzekochen für 60 min
- Frühe Hopfengabe: Bitterextrakt zu Kochbeginn, Ziel 20 IBU
- Citra® T90 Pellets oder superkrit.
 CO₂-Extrakt zu Whirlpoolbeginn

Probe	Hopfengabe Würzekochen	Hopfengabe Whirlpool			
control	0,09 g/L	_			
ex0.5	0,09 g/L	0,5 g/L Extrakt			
ex1.0	0,09 g/L	1,0 g/L Extrakt			
ex2.0	0,09 g/L	2,0 g/L Extrakt			
pe2.9	0,09 g/L	2,9 g/L Pellets			
pe5.8	0,09 g/L	5,8 g/L Pellets			

Fermentation

- Fermentation mit Alehefe (Wyeast 1056), 20 °C
- Alkohol 5,0 % vol., V_s 80 %
- pH 4,4, Farbe 8,0 EBC
- Gelöster O₂ <0,05 mg/L

Brauversuche im Pilotmaßstab – Sensorik

Check-all-that-apply (CATA, orthonasal und retronasal)

- Sensorikpanel bestehend aus 16 einheitlich geschulten Individuen
- Ultra Flash Profiling der Proben und Referenzbiere zur Definition von 20 Aromaattributen
- Attribute so gewählt, dass sie das Aroma von frischem sowie gealtertem, stark gehopftem Bier vollständig abdecken (für forcierte Alterung)
- Schulung der Panelisten mit Lebensmittel- und Aromareferenzen für jedes Attribut
- Bewertung Bierproben durch Auswahl 2 6 Attribute pro Probe, die deren Aroma beschreiben
- > Frequenzdaten (Häufigkeitsverteilung) je Attribut (n=20) und Probe (n=6)

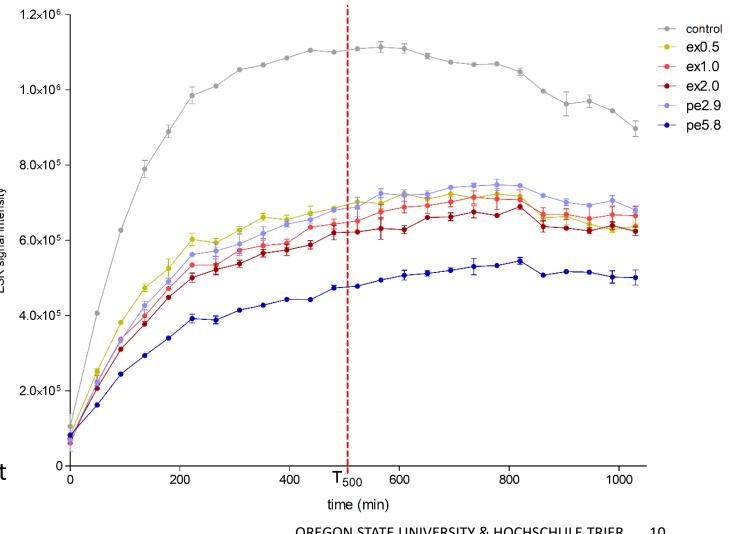
Aromaattribute								
caramel	cardboard	citrus	DMS	dried fruit				
floral	fruity	grassy	herbal	honey				
melon	nutty	overripe fruit	resinous	spicy				
sweaty	sweet aromatic	tropical	vegetal	woody				

Brauversuche im Pilotmaßstab – Sensorik

A	Häufigkeitsverteilung der Attribute zwischen Bieren laut Sensorikpanel							0/	
Attribut	ctrl	ex0.5	pe2.9	ex1.0	pe5.8	ex2.0	Summe	% vom Max.	
citrus	5	8	7	3	9	8	40	100	
fruity	9	7	8	6	3	4	37	93	
resinous*	1 ^a	8 ^b	3 ^{ab}	5 ^{ab}	8 ^b	7 ^{ab}	32	80	
sweaty*	1 ^a	5 ^{ab}	O ^a	6 ^{ab}	9 ^b	7 ^{ab}	28	70	
floral	4	5	4	3	6	5	27	68	
tropical	2	6	4	5	5	4	26	65	
herbal	4	4	4	3	4	6	25	63	
grassy	7	2	3	5	4	3	24	60	
sweet aromatic	4	3	4	3	3	1	18	45	
vegetal	2	0	4	6	2	3	17	43	
overripe fruit	1	1	2	5	2	3	14	35	
honey	5	1	4	2	1	0	13	33	
melon	3	3	1	3	1	1	12	30	
woody	2	1	2	2	3	1	11	28	
cardboard	0	1	1	1	2	2	7	18	
dried fruit	2	1	0	0	0	1	4	10	
DMS	2	0	1	1	0	0	4	10	
spicy	1	1	2	0	0	0	4	10	
caramel	1	1	0	0	0	0	2	5	
nutty	0	0	0	1	0	0	1	3	

^{*}Signifikante Unterschiede zwischen Proben laut Cochran's Q Test (p ≤ 0,05). Proben mit gleichen hochgestellten Buchstaben sind nicht significant unterschiedlich bei p = 0,05.

Abschätzung der erwarteten Aromastabilität

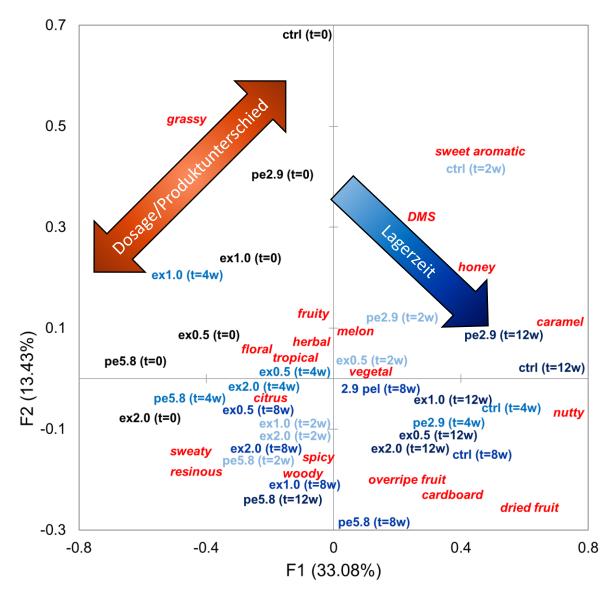

Elektronenspinresonanz(ESR)-Spectroskopie

ESR-Signalintensität nach 500 min forciertem O_2 -Einfluss bei 60 °C = T_{500} Abschätzung des Radikalbildungspotenzials (T₅₀₀ † erwartete Aromastabilität ↓)

Quantifizierung freies SO₂ mittels kontinuierlicher **Durchflussanalyse**

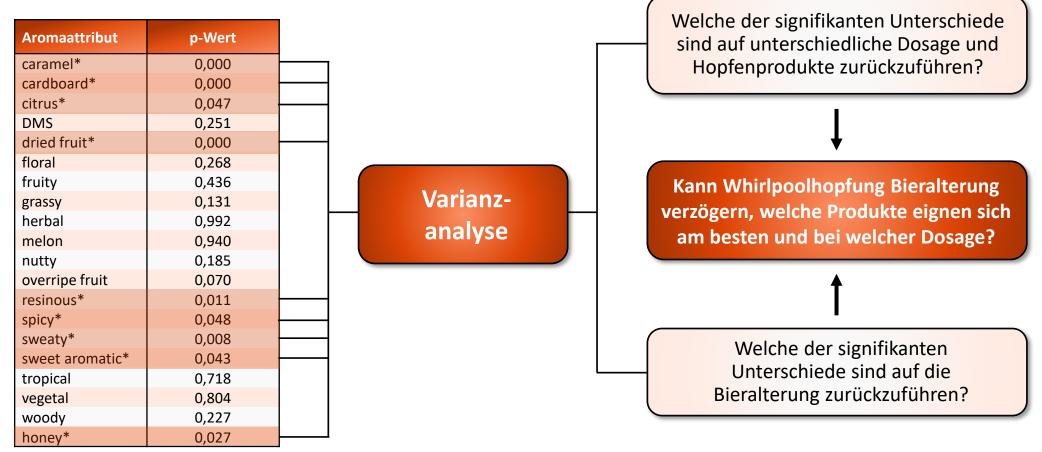
Freies $SO_2 \le 0.5$ mg/L in allen Proben a) wenig/kein SO₂ gebildet von Alehefe

b) Vorhandenes SO₂ bereits nach 3 Wochen Lagerung bei 4 °C aufgebraucht trotz niedrigem O₂



Bieralterungsversuche

Forcierte Alterung


- Lagerung der Biere in 20 L Kegs bei 30 °C
- 12 Wochen bei 30 °C ≈ 2 Jahre bei 8 °C
- CATA sensorische Evaluierung mittels Panel nach 2, 4, 8 und 12 Wochen forcierter Alterung analog zur Evaluierung des frischen Bieres

Bieralterungsversuche – Sensorik

Cochran's Q Test zum Vergleich aller 6 Biere zu allen 5 Evaluationszeitpunkten

Bieralterungsversuche – Varianzanalyse

Vergleich zwischen Evaluationszeitpunkten über die Lagerzeit

Vergleich Evaluations-	Aromaattribute mit signifikanten Unterschieden zwischen Evaluationszeitpunkten der forcierten Alterung laut Varianzanalyse								
zeitpunkte der forcierten Alterung	caramel	cardboard	citrus	dried fruit	resinous	spicy	sweaty	sweet aromatic	honey
t=0 vs t=12w	*	*	ns	*	ns	*	ns	*	*
t=0 vs t=2w	*	*	ns	*	ns	*	ns	ns	*
t=0 vs t=4w	ns	*	ns	*	ns	ns	ns	ns	ns
t=0 vs t=8w	ns	ns	ns	*	ns	ns	ns	ns	ns
t=4w vs t=12w	*	*	ns	*	ns	ns	ns	*	*
t=4w vs t=2w	*	*	ns	ns	ns	ns	ns	ns	*
t=4w vs t=8w	ns	ns	ns	ns	ns	ns	ns	ns	ns
t=8w vs t=12w	*	*	ns	*	ns	ns	ns	ns	*
t=8w vs t=2w	*	ns	ns	ns	ns	ns	ns	ns	*
t=2w vs t=12w	ns	*	ns	*	ns	ns	ns	ns	ns

^{*}Signifikante Unterschiede laut Varianzanalyse (ANOVA, $p \le 0.05$), ns = nicht signifikant.

Bieralterungsversuche – Varianzanalyse

Vergleich der Whilpoolhopfendosagen und Hopfenprodukte über gesamte Lagerzeit

Vergleich unterschied-	Aromaattribute mit signifikanten Unterschieden zwischen Hopfenprodukten und -dosagen laut Varianzanalyse								
licher Biere über gesamte Lagerzeit	caramel	cardboard	citrus	dried fruit	resinous	spicy	sweaty	sweet aromatic	honey
ex0.5 vs ctrl	ns	ns	*	ns	*	ns	ns	*	*
ex0.5 vs pe2.9	ns	ns	*	ns	*	ns	ns	*	*
ex0.5 vs ex2.0	ns	ns	*	ns	*	ns	ns	ns	ns
ex0.5 vs pe5.8	ns	ns	*	ns	*	ns	ns	ns	ns
ex0.5 vs ex1.0	ns	ns	ns	ns	*	ns	ns	ns	ns
ex1.0 vs ctrl	ns	ns	*	ns	*	ns	ns	*	*
ex1.0 vs pe2.9	ns	ns	ns	ns	*	ns	ns	ns	ns
ex1.0 vs ex2.0	ns	ns	ns	ns	*	ns	ns	ns	ns
ex1.0 vs pe5.8	ns	ns	ns	ns	*	ns	ns	ns	ns
pe5.8 vs ctrl	ns	ns	ns	ns	*	ns	ns	*	ns
pe5.8 vs pe2.9	ns	ns	ns	ns	ns	ns	ns	ns	ns
pe5.8 vs ex2.0	ns	ns	ns	ns	ns	ns	ns	ns	ns
ex2.0 vs ctrl	ns	ns	ns	ns	*	ns	ns	ns	ns
ex2.0 vs pe2.9	ns	ns	ns	ns	ns	ns	ns	ns	ns
pe2.9 vs ctrl	ns	ns	ns	ns	*	ns	ns	ns	ns

^{*}Signifikante Unterschiede laut Varianzanalyse (ANOVA, $p \le 0.05$), ns = nicht signifikant.

Fazit und Ausblick

- Whirlpoolhopfengabe mit Citra® Pellets und Extrakt reduziert die Metallionenkonzentration in Würze und konnte die Entwicklung altersbedingter Fehlaromen signifikant verzögern
- Bei vergleichbarer Dosis etwas stärkere Reduktion der Cu- und Fe-Konzentration mit Extrakt (ICP-OES) aber stärkere Radikalunterdrückung mit Pellets (ESR-Spektroskopie)
- Im Labormaßstab beste Ergebnisse mit höchsten Dosagen beider Produkte
- Leichte Bieraromaunterschiede zwischen Hopfenprodukten bei vergleichbarer Dosage, bei niedriger Dosage stärkeres Hopfenaroma mit Extrakt
- Im Vergleich zur Kontrolle ohne Whirlpoolhopfung Aromaunterschiede vernachlässigbar

JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2023, VOL. 81, NO. 3, 466-479 https://doi.org/10.1080/03610470.2022.2081480

The Impact of Whirlpool Hop Addition on the Wort Metal Ion Composition and on the Flavor Stability of American Style Pale Ales Using Citra® Hop **Extract and Pellets**

Michael Féchir^a 📵, Jeff Dailey^b, Brian Buffin^b, Chris J. Russo^c and Thomas H. Shellhammer^a 📵

^aDepartment of Food Science and Technology, Oregon State University, Corvallis, OR, U.S.A.; ^bJohn I. Haas, Yakima, WA, U.S.A.; ^cKeck Collaboratory for Plasma Spectrometry, Oregon State University, Corvallis, OR, U.S.A.

- Whirlpoolhopfung ist Werkzeug zur Verbesserung der Aromastabilität, Wahl des Produktes hängt von Wirtschaftlichkeit, Vorlieben und Technologie ab
- Wechselwirkungen mit Kalthopfung, Spezialmalzen, verschiedenen Hefen und Bierstilen noch zu untersuchen

Vielen Dank für die Aufmerksamkeit!

Trier University of Applied Sciences

H O C H
S C H U L E
T R I E R

Literatur

Barnette, B. M.; Shellhammer, T. H. Evaluating the Impact of Dissolved Oxygen and Aging on Dry-Hopped Aroma Stability in Beer. *J. Am. Soc. Brew. Chem.* **2019**, *77*, 179–187.

Bettenhausen, H. M.; Barr, L.; Broeckling, C. D.; Chaparro, J. M.; Holbrook, C.; Sedin, D.; Heuberger, A. L. Influence of Malt Source on Beer Chemistry, Flavor, and Flavor Stability. *Food Res Int.* **2018**, *113*, 487–504.

Duan, W.; Roddick, F. A.; Higgins, V. J.; Rogers, P. J. A Parallel Analysis of H2S and SO2 Formation by Brewing Yeast in Response to Sulfur-Containing Amino Acids and Ammonium Ions. *J. Am. Soc. Brew. Chem.* **2004**, *62*, 35–41.

Jaskula, B.; Goiris, K.; Opstaele, F. V.; Rouck, G. D.; Aerts, G.; Cooman, L. D. Hopping Technology in Relation to α -Acids Isomerization Yield, Final Utilization, and Stability of Beer Bitterness. *J. Am. Soc. Brew. Chem.* **2009**

Jenkins, D.; James, S.; Dehrmann, F.; Smart, K.; Cook, D. The Impacts of Copper, Iron and Manganese Metal Ions on the EPR Assessment of Beer Oxidative Stability. *J. Am. Soc. Brew. Chem.* **2018**, *76*, 50–57.

Kunz, T.; Strahmel, A.; Cortes, N.; Kroh, L. W.; Methner, F.-J. Influence of Intermediate Maillard Reaction Products with Enediol Structure on the Oxidative Stability of Beverages. *J. Am. Soc. Brew. Chem.* **2013**, *71*, 114–123.

Lermusieau, G.; Liégeois, C.; Collin, S. Reducing Power of Hop Cultivars and Beer Ageing. Food Chem. 2001, 72, 413–418.

Lund, M. N.; Krämer, A. C.; Andersen, M. L. Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer. *J. Agric. Food Chem.* **2015**, *63*, 8254–8261.

Wietstock, P. C.; Kunz, T.; Waterkamp, H.; Methner, F.-J. Uptake and Release of Ca, Cu, Fe, Mg, and Zn during Beer Production. *J. Am. Soc. Brew. Chem.* **2015**, *73*, 179–184.